Defining antigen‐dependent stages of T cell migration from the blood to the central nervous system parenchyma

AS Archambault, J Sim, MAT Gimenez… - European journal of …, 2005 - Wiley Online Library
AS Archambault, J Sim, MAT Gimenez, JH Russell
European journal of immunology, 2005Wiley Online Library
In experimental autoimmune encephalomyelitis (EAE), intravenous transfer of activated
CD4+ myelin‐specific T cells is sufficient to induce disease. Transferred T cells access the
CNS parenchyma by trafficking across the blood brain barrier (BBB) vascular endothelium
into the perivascular space, and then across the glial limitans that is made up of astrocytes
and microglia. Flow cytometry analysis of cells isolated from CNS tissue does not distinguish
between T cell populations at the various stages of migration. In this study, we have used …
Abstract
In experimental autoimmune encephalomyelitis (EAE), intravenous transfer of activated CD4+ myelin‐specific T cells is sufficient to induce disease. Transferred T cells access the CNS parenchyma by trafficking across the blood brain barrier (BBB) vascular endothelium into the perivascular space, and then across the glial limitans that is made up of astrocytes and microglia. Flow cytometry analysis of cells isolated from CNS tissue does not distinguish between T cell populations at the various stages of migration. In this study, we have used GK1.5 (anti‐CD4) treatment along with immunohistochemistry to distinguish between populations of T cells that are associated with the vasculature, T cells that have migrated into the perivascular space, and T cells in the parenchyma. We have also re‐evaluated antigen specificity requirements of T cells as they are recruited to the CNS parenchyma. Activated myelin‐specific T cells are restricted to the CNS vasculature for at least 24 h post transfer. MHC class II expression on the recipient is required for cells to traffic across the CNS vascular endothelium. Further, Con A‐stimulated or non‐CNS‐specific (ovalbumin‐specific) T cells fail to migrate into the perivascular space, and only enter the CNS parenchyma when co‐transferred with myelin‐specific T cells. Our results indicate that Th1 populations cannot accumulate in the perivascular (subarachnoid, Virchow‐Robbins) space without a CNS antigen‐specific signal.
Wiley Online Library