

Supplemental Figure 1. Expression of miR-26a is higher than miR-26b in the mouse liver. Dot blot

analysis of miR-26a/b expression in the livers of wild-type mice fed a chow diet (CD).

Gene ontology analysis

Term	Count	p value
cellular metabolic process	92	2.62E-04
cellular process	128	6.83E-04
primary metabolic process	92	0.001488
cellular macromolecule metabolic process	73	0.002241
negative regulation of cell proliferation	11	0.004752
gene silencing by RNA	4	0.004894
DNA metabolic process	13	0.006998
protein localization	18	0.010977
negative regulation of biological process	30	0.012601
metabolic process	95	0.013085

Supplemental Figure 2. Potential involvement of miR-26a in metabolism. KEGG pathway analysis

on Top 500 targets of miR-26a predicted by TargetScan.

Supplemental Figure 3. miR-26a is slightly reduced in obesity-associated organs of ob/ob mice. QRT-PCR analysis of miR-26a expression in kidney, heart and muscle of ob/ob mice. Data are shown as

mean \pm SEM.

Supplemental Figure 4. Expression of miR-26a host genes, CTDSP2 and CTDSPL, is not affected by obesity. (**A** and **B**) QRT-PCR analysis of miR-26a expression in the livers of ob/ob (**A**) and high fat diet (HFD)-induced obese mice (**B**). Data are shown as mean \pm SEM.

Supplemental Figure 5. HPRT-miR-26a TG and WT mice fed a CD have no significant differences in body weight (BW), organ weight, glucose disposal or insulin sensitivity (A-E) Adult (8-12 weeks old) male HPRT-miR26a-TG mice and their WT littermate controls fed a chow diet were studied. Body weight (A), ratio of liver (B) and heart (C) to body weight were measured (HPRT-miR26a-TG, n=12; WT, n=14). (D) GTT (HPRT-miR26a-TG, n=7; WT, n=7). (F) ITT (HPRT-miR-26a-TG, n=7; WT, n=7). Data are shown as mean \pm SEM.

Supplemental Figure 6. Hematoxylin staining of paraffin sections from visceral (VAT) and subcutaneous (SAT) fat (A), heart, muscle and brown adipose tissue (BAT) (**B**) of HPRT-miR26a-TG and WT mice fed an HFD for 18 weeks. Scale bar, 100 μ M.

Supplemental Figure 7. Alb-miR-26a TG and WT mice fed a CD have no significant differences in glucose disposal or insulin sensitivity. (A) QRT-PCR analysis of miR-26a expression in liver of Alb-miR-26a TG and their WT littermate controls (n=6). (**B-D**) Adult (8-12 weeks old) male Alb-miR26a-TG mice and their WT littermate controls fed a chow diet were studied. (**B**) Body weight (Alb-miR26a-TG, n=9; WT, n=7), (**C**) GTT (Alb-miR26a-TG, n=4; WT, n=4), and (**D**) ITT (Alb-miR26a-TG, n=9; WT, n=6) were measured. Data are shown as mean \pm SEM.

Supplemental Figure 8. Alb-miR-26a-TG and WT mice were fed HFD beginning at 6-8 weeks-of-age. The following measurements were performed during the course of the HFD. (**A**) Body weight (n=15-17). (**B**) Plasma insulin levels during GTT (30 minutes after glucose injection) (n=3). (**C** and **D**) Hematoxylin staining of paraffin sections from visceral (VAT) and subcutaneous (SAT) fat (**C**), heart, muscle and brown adipose tissue (BAT) (**D**) of Alb-miR-26a-TG and WT mice fed an HFD for 16 weeks. Scale bar, 100 μM.

Supplemental Figure 9. Hyperinsulinemic-euglyemic clamp studies on Alb-miR-26a TG mice and WT controls after 18 weeks of HFD (n=4-6). GDR: glucose disposal rate; BGP: basal glucose production.

Supplemental Figure 10. AKT phosphorylation in livers of HPRT-miR-26a TG mice and WT littermate controls infused with insulin (0.25 U/kg) through the portal vein and fed an HFD for 18 weeks.

Gene Ontology analysis

Gene Ontology term	Gene count	Fold enrichment	P Value
oxidation reduction	79	5.938286	2.57E-39
translation	34	5.383832	4.80E-15
generation of precursor metabolites and	k		
energy	29	5.612557	2.58E-13
fatty acid metabolic process	21	5.765072	6.05E-10
glucose metabolic process	17	6.133723	1.61E-08
hexose metabolic process	18	5.380084	3.90E-08
monosaccharide metabolic process	19	5.024855	4.26E-08
carboxylic acid catabolic process	13	8.107026	5.72E-08
organic acid catabolic process	13	8.107026	5.72E-08
energy derivation by oxidation of organi	ic		
compounds	14	7.216144	6.17E-08
cofactor metabolic process	17	4.718248	6.31E-07
coenzyme metabolic process	14	4.94533	4.99E-06

Supplemental Figure 11. Gene ontology analysis of differentially expressed hepatic proteins between WT and Alb-miR-26a TG mice.

KEGG pathway analysis

Term	Count	P Value
Fatty acid metabolism	14	2.32E-11
Ribosome	17	2.58E-10
PPAR signaling pathway	13	3.51E-07
Valine, leucine and isoleucine degradation	10	1.21E-06
Drug metabolism	12	1.59E-06
Metabolism of xenobiotics by cytochrome P450	10	2.69E-05
Propanoate metabolism	7	6.94E-05
Glycolysis / Gluconeogenesis	9	2.21E-04
Starch and sucrose metabolism	6	0.00165
Tryptophan metabolism	6	0.002664

Supplemental Figure 12. KEGG pathway analysis on hepatic proteins downregulated in Alb-miR-26a

TG mice.

Supplemental Figure 13. (A) QRT-PCR analysis of selected lipogenic genes in livers from mice either fed a CD or HFD for 16 weeks (n=3-5 mice/group). (B) Glucose production (4 hours) in primary hepatocytes isolated from Alb-miR-26a TG and WT mice fed either a CD or an HFD for 16 weeks. Results are normalized to the level in hepatocytes isolated from WT mice fed a CD (n=3). (C) Expression of gluconeogenic genes in livers of 16 hours fasted Alb-miR-26a TG and WT mice fed a CD (n=3). (D) Expression of gluconeogenic genes in DEX-treated primary hepatocytes isolated from Alb-miR-26a TG and WT mice fed a CD (n=3). Data are shown as mean \pm SEM. n.s., not significant.

		•
	Hsa	Mmu
Acsl3 Acsl4	1	2
GSK3β	3	3
Рск1 Рксб	1	1
Pkc0 Tcf7l2	1	2

Supplemental Figure 14. Number of predicted miR-26a target sites for indicated genes.

No. of miR-26a target sites

A

Acsl3 (NM_001033606) (3'UTR length: 1328 bp)

Binding site 1 (50-57)

Acsl3 UTR	5'	GAUCAAAUAGGAAAAUACUUGAA	3′
miR-26a	3'	 UGGAUAGGACUUAAUGAACUU	5 '

Binding site 2 (1243-1249)

Acsl3 UTR	5'	AUACUAACAAUUGUGACUUGAAA	3′
miR-26a	3'	UCGGAUAGGACCUAAUGAACUU	5′

B

Acsl4 (NM_001033600) (3'UTR length: 2684 bp)

Binding site 1 (1213-1219)

Acsl4 UTR	5'	GGAGAAGGGCAGAGUUACUUGAU	3′
	.		
miR-26a	3'	UCGGAUAGGACCUAAUGAACUU	5'

Binding site 2(2646-2652)

Acsl4 UTR	5'	UAUUUUUAAGUUUGCACUUGAAU	3′
miR-26a	3'	UCGGAUAGGACCUAAUGAACUU	5′

Gsk3β (NM_019827) (3'UTR length: 5510 bp)

Binding site 1 (41-47)

Gsk3β UTR	5'	GGAAAGACCAGCACUUACUUGAG	3′
•			
miR-26a	3'	UCGGAUAGGACCUAAUGAACUU	5 ′

Binding site 2 (1635-1641)

```
Gsk3β UTR <sup>5</sup>' GUGCUUAUGGGCCAUUACUUGAC 3'
|| || || ||||||||
miR-26a <sup>3</sup>' UCGGAUAGGACCUAAUGAACUU 5'
```

Binding site 3 (4701-4708)

 Gsk3β UTR
 5'
 GCUGUGUAACAUUACUACUUGAA
 3'

 miR-26a
 3'
 UCGGAUAGGACCUAAUGAACUU
 5'

D

Ε

Pck1 (NM_011044) (3'UTR length: 607 bp)

Binding site (312-318)

```
        PCK1 UTR
        5' AAUGCACAGAAAACAUACUUGAG
        3'

        miR-26a
        3' UCGGAUAGGACCUAAUGAACUU
        5'
```

Pkcδ (NM_011103) (3'UTR length: 513 bp)

Binding site (232-239)

```
        Pkcō UTR
        5 '
        AAUCCUGUGUUUCAUUACUUGAA
        3'

        miR-26a
        3 '
        UCGGAUAGGACCUA----AUGAACUU
        5'
```

F Pkcθ

```
Pkcθ (NM_008859) (3'UTR length: 1101 bp)
```

```
Binding site 1 (278-285)
```

```
Binding site 2 (567-573)
```

```
Pkc0 UTR 5' UAAACAUAGCAUGAAACUUGAAA 3'
```

G

Tcf7l2 (NM_001142918) (3'UTR length: 2240 bp)

Binding site (1459-1465)

```
        Tcf7l2 UTR 5' AUUCUGUAAAACAAGACUUGAAC 3'

        || |
        || || || ||

        miR-26a
        3' UGGAUAGGACUUAAUGAACUU 5'
```

Supplemental Figure 15. miR-26a targets murine Acsl3, Acsl4, Gsk3β, Pck1, Pkcδ, Pkcθ and Tcf7l2.

Predicted consequential pairing of target region, as well as its mutant, and miR-26a is shown (bottom).

Supplemental Figure 16. Heatmap of mRNA levels of hepatic genes in CD-fed WT mice that received a single injection of LNA-miR-26a antisense inhibitor or PBS (n=4). Red and blue depict higher and lower gene expression, respectively. Color intensity indicates magnitude of expression differences.

Supplemental Table 2

Gene Ontology analysis (related to Figure 4B)

Term	Genes
	CYP2D9, CYP2J5, CYB5R3, CYP2D10, ACOX1, ASPDH, UQCRC1, EHHADH, PRDX5, PRDX2, PRDX3, UQCRFS1,
	PRDX1, AKR1C13, MTHFD1, PECR, UQCR10, CPOX, NDUFS8, SPR, DHTKD1, NDUFS2, RTN4IP1, NQO2, SUOX,
	CYP2C54, ACADM, CYP1A1, CYCS, CYP2C29, QDPR, CYB5B, GRHPR, ACADL, POR, DHRS1, DHRS4, CYP27A1,
	ALDH1B1, UQCRH, SQLE, DLD, HSD11B1, MECR, HSD17B11, ME1, ME3, ACADSB, HSD17B13, HSD17B12, UGDH,
	ADH5, AASS, FTH1, ALDH3A2, CYP4A12A, FMO1, FASN, IDH2, DMGDH, HSD17B4, BCKDHA, GPD2, NDUFA4,
	GCDH, CYP2C37, PTGR2, NDUFA9, MAOB, BCKDHB, HGD, CRYZ, SOD1, SLC25A12, CYP7B1, DBT, BLVRB, ACAD11,
oxidation reduction	СҮР4А14
	TUFM, RPL17, RPL14, RPLP2, RPS2, RPL7, RPS3A, RPLP0, RPL9, RPL3, RPL10, RPL10A, RPL4, RPS20, RPL12,
	RPS27A, RPS24, EEF1A1, AARS, RPL27, RPL24, RPS4X, EIF4G2, TARS, RPS18, RPL18A, RPL22, RPS17, RPS14,
translation	EIF4A2, RPL21, EIF4A1, RPS13, EEF1G
	ALDOA, UQCRC1, ALDOB, PGAM1, AASS, UQCRFS1, TPI1, UQCR10, NDUFS8, IDH2, ENO3, GYS2, DHTKD1,
generation of precursor	NDUFS2, ENO1, NDUFA4, DLST, NDUFA9, SUCLG1, CYCS, CYB5B, PPP1CB, PCK1, SLC25A12, GBE1, PYGL, UQCRH,
metabolites and energy	DLD, PYGB
	ACOX1, ACADSB, ECH1, ACADM, CPT2, EHHADH, ECHDC2, LYPLA2, LYPLA1, ACADL, CPT1A, PECR, TPI1,
fatty acid metabolic process	CYP4A12A, FAAH, FASN, HSD17B4, ACAA1B, MECR, SLC27A2, CROT
	ALDOA, GPD2, ALDOB, PGAM1, FBP1, PPP1CB, CPT1A, PCK1, PGLS, TPI1, GBE1, PYGL, ENO3, GYS2, DHTKD1,
glucose metabolic process	PYGB, ENO1
	ALDOA, GPD2, ALDOB, PGAM1, FBP1, PPP1CB, CPT1A, PCK1, GALK1, PGLS, TPI1, GBE1, PYGL, ENO3, GYS2,
hexose metabolic process	DHTKD1, PYGB, ENO1
monosaccharide metabolic	GPD2, ALDOA, ALDOB, PGAM1, FBP1, PPP1CB, CPT1A, PCK1, GALK1, PGLS, UGT1A9, TPI1, GBE1, PYGL, UGT1A2,
process	ENO3, GYS2, DHTKD1, PYGB, ENO1
	BCKDHA, ACOX1, ACADM, EHHADH, BCKDHB, HGD, AASS, MTHFD1, AMDHD1, FAAH, DMGDH, HSD17B4,
organic acid catabolic process	SLC27A2
	BCKDHA, ACOX1, ACADM, EHHADH, BCKDHB, HGD, AASS, MTHFD1, AMDHD1, FAAH, DMGDH, HSD17B4,
carboxylic acid catabolic process	SLC27A2
energy derivation by oxidation of	
organic compounds	DLST, UQCRC1, SUCLG1, PPP1CB, PCK1, SLC25A12, UQCR10, GBE1, UQCRH, PYGL, DLD, IDH2, GYS2, PYGB
	ASPDH, DLST, COASY, ALAD, EHHADH, SUCLG1, GSTT1, SOD1, MTHFD1, DBT, PGLS, TPI1, HPX, CPOX, GSTK1,
cofactor metabolic process	IDH2, QPRT
coenzyme metabolic process	DLST, COASY, ASPDH, EHHADH, SUCLG1, GSTT1, SOD1, MTHFD1, DBT, PGLS, TPI1, GSTK1, IDH2, QPRT