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Inflammation is a critical component of atherosclerosis. IL-1 is a classic proinflammatory cytokine that has been linked to
atherosclerosis. A clinical trial has been launched in which an antibody specific for IL-1β is being studied for its effects on
cardiovascular events in patients with atherosclerosis. In this issue of the JCI, Alexander et al. report that mice lacking the
receptor for IL-1 unexpectedly have features of advanced atherosclerosis that suggest the atherosclerotic plaques may be
less stable. These findings illustrate the complexity of inflammatory pathways in atherosclerosis and suggest the need for
careful calibration of antiinflammatory approaches to atherosclerosis.
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impact on the immunogenicity of HIV 
antigens vectored in rare serotype human 
adenoviral vectors? Frahm et al. did not 
have samples from such clinical trials 
available to them to test this hypothesis. 
However, clinical trials employing these 
vectors have started, and more will follow 
soon, which will allow for the hypoth-
esis to be tested in the context of rigorous 
clinical investigation, thus providing criti-
cal insight to guide the development of a 
globally effective HIV vaccine.
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Inflammation is a critical component of atherosclerosis. IL-1 is a classic pro-
inflammatory cytokine that has been linked to atherosclerosis. A clinical trial 
has been launched in which an antibody specific for IL-1β is being studied 
for its effects on cardiovascular events in patients with atherosclerosis. In 
this issue of the JCI, Alexander et al. report that mice lacking the receptor for 
IL-1 unexpectedly have features of advanced atherosclerosis that suggest the 
atherosclerotic plaques may be less stable. These findings illustrate the com-
plexity of inflammatory pathways in atherosclerosis and suggest the need for 
careful calibration of antiinflammatory approaches to atherosclerosis.

Coronary artery disease (CAD) is the lead-
ing cause of death in the United States for 
both men and women. CAD is caused by 

the progressive formation in the coronary 
arteries of atherosclerotic plaques that 
are characterized by the accumulation 
of lipids, in particular cholesterol and its 
derivatives, and inflammatory cells. In the 
early stages of disease development, the 
atherosclerotic plaques are small, lipid 
rich, and asymptomatic. Over time, they 

mature into advanced atherosclerotic 
plaques, with increased content of vas-
cular smooth muscle cells, extracellular 
matrix, and inflammatory markers, and 
gain characteristics that may have clinical 
consequences. Clinical symptoms can arise 
from plaques causing flow-limiting steno-
ses, although the process of compensatory 
remodeling involving expansion of the 
vessel can help to protect against this. The 
more clinically important consequence of 
coronary atherosclerosis is the rupture or 
disruption of a “vulnerable” plaque. Plaque 
rupture leads to prothrombotic material in 
the plaque becoming exposed to the blood 
and to thrombosis, resulting in acute coro-
nary events, including myocardial infarc-
tion and death. There has been substantial 
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interest in identifying pathways that lead 
to plaque instability and in the develop-
ment of novel therapies that stabilize the 
vulnerable plaque and reduce acute coro-
nary events (1).

Inflammation and atherosclerosis
Inf lammation plays a key role in all 
stages of atherogenesis, from recruit-
ment of monocytes and other leukocytes 
to growth of the plaque to plaque rup-
ture and thrombosis (1, 2). A variety of 
inflammatory pathways have been asso-
ciated with human atherosclerosis, and 
such links have been investigated exten-
sively in mouse models of atherogenesis 
(3). A remarkable number of inflamma-
tory mediators — including a myriad of 
cytokines and their receptors, chemokines 
and their receptors, and intracellular sig-
naling molecules — have been shown when 
deleted from the mouse genome to influ-
ence plaque size, often (but not always) in 
the direction of reduced atherosclerosis 
when the relevant inflammatory pathway 
is interrupted (3). However, the relevance 
of these studies to human atherosclerosis 
remains uncertain in the absence of direct 
interventional randomized controlled tri-
als in humans.

There has been interest for several years 
in the potential role of the proinflamma-
tory cytokine IL-1 in atherogenesis (4). 
Both IL-1α and IL-1β activate IL-1 receptor 
type I (IL-1R1), and IL-1 receptor antago-

nist (IL-1ra) competitively inhibits their 
binding. IL-1α remains associated with the 
plasma membrane, whereas IL-1β is fully 
secreted and can act on IL-1R1 on cells dis-
tant from the cell of origin. Thus IL-1β has 
been thought to be of greater relevance to 
human inflammatory diseases.

Recently there has been considerable 
interest in the inflammasome, a multi-
molecular cellular complex containing 
nucleotide-binding domain–, leucine-
rich repeat–, and pyrin domain–contain-
ing receptors (NLRPs). The inflamma-
some responds to endogenous danger 
signals by activating caspase-1, which in 
turn converts pro–IL-1β into the mature 
active form (Figure 1 and refs. 5, 6). Cer-
tain genetic mutations affecting proteins 
of the NLRP3 inflammasome cause rare 
autoinflammatory disorders character-
ized by excessive IL-1β production (e.g., 
Muckle-Wells syndrome and familial cold 
autoinflammatory syndrome; ref. 7); IL-1β  
inhibition appears to be efficacious in 
these settings (8). More common condi-
tions are also characterized by activation 
of the NLRP3 inflammasome and exces-
sive production of IL-1β. For example, 
urate crystals in the joint activate NLRP3 
and drive IL-1β production, leading to 
acute gout (9). Thioredoxin-interacting 
protein (TXNIP), expression of which is 
upregulated by glucose, is a direct ligand 
for and activates NLRP3 and thus pro-
motes IL-1β production, possibly exacer-

bating type 2 diabetes (10). Indeed, anti–
IL-1 therapies have been shown to have 
some efficacy in type 2 diabetes (11, 12).

Because atherosclerosis is a chronic 
inflammatory condition that IL-1β has 
been linked to in the past (4, 13), it was 
of high interest when, in 2010, two pub-
lications implicated the NLRP3 inflam-
masome in atherosclerosis by demon-
strating that cholesterol crystals activate 
the NLRP3 inflammasome and generate  
IL-1β production (Figure 1 and refs. 14, 
15). Atherosclerosis-prone mice recon-
stituted with bone marrow from NLRP3-
deficient or IL-1β–deficient mice were 
shown to have less atherosclerosis (14), 
consistent with a causal role for this 
pathway in promoting atherogenesis. 
This observation garnered considerable 
interest because of a clear pathway link-
ing the inflammasome to atherosclerosis 
and the implications for novel therapeu-
tic approaches (10, 16, 17).

Anti–IL-1β therapy and acute 
coronary events: a clinical trial
Spurred by the data linking the NLRP3 
inflammasome/IL-1β pathway to athero-
genesis (12, 13) and earlier work indicat-
ing a causal role for IL-1β in promoting 
atherosclerosis in mice (18, 19), an ambi-
tious clinical trial was recently launched. 
Canakinumab is a humanized monoclo-
nal antibody specific for IL-1β that is effi-
cacious against and currently approved 

Figure 1
Role of the NLRP3 inflammasome and IL-1β in atherosclerosis. Extracellular cholesterol crystals act as a “danger signal” and activate the 
NLRP3 inflammasome, which triggers activation of caspase-1, leading to cleavage of pro–IL-1β to its active form. The active form of IL-1β is 
then secreted from the cell, where it mediates autocrine and paracrine effects through activation of the IL-1R1.
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for autoinflammatory disorders driven 
by excess IL-1β (including Muckle-Wells 
syndrome and familial cold autoinflam-
matory syndrome) (8). The Canakinumab 
Anti-inf lammatory Thrombosis Out-
comes Study (CANTOS) is designed to 
test the hypothesis that IL-1β inhibition 
will reduce major cardiovascular events 
in persons with preexisting CAD (20). 
Because of uncertainty about the opti-
mal degree of IL-1β inhibition needed to 
achieve cardiovascular event reduction 
with acceptable safety, canakinumab will 
be tested at three different doses com-
pared with placebo, for a total of four 
parallel arms in a study planned to enroll 
more than 17,000 subjects. This trial is 
the first true test of the hypothesis that 
interrupting an inflammatory pathway 
involved in atherosclerosis will reduce 
cardiovascular events.

IL-1 receptor deficiency 
and influence on advanced 
atherosclerosis in mice
Given the initiation of the CANTOS trial, 
the paper by Alexander et al. in this issue of 
the JCI (21) is of considerable interest. The 
authors investigated the effects of deletion 
of the gene encoding IL-1R1 on advanced 
atherosclerotic plaques in atherosclerosis-
prone ApoE-deficient mice fed a high-fat 
diet for up to 30 weeks. Consistent with 
previous reports (18, 22) and the authors’ 
a priori hypothesis, overall plaque size in 
the aortic root (the traditional location for 
assessment of mouse atherosclerosis) was 
reduced in mice lacking IL-1R1, support-
ing a role for IL-1 signaling in promoting 
plaque growth in the mouse (21). Howev-
er, the authors also examined the brachio-
cephalic artery, another site of atheroscle-
rosis in disease-prone mice. Unexpectedly, 
the authors found in the IL-1R1–deficient 
mice that plaque size was not reduced and, 
furthermore, that the atherosclerotic ves-
sels had reduced lumen size as a result of 
reduced outward vessel remodeling. Upon 
examination of the aortic roots, the same 
observation of impaired outward remod-
eling was made. In addition, plaques at 
both sites demonstrated reduced vascular 
smooth muscle cell and collagen content 
and increased intraplaque hemorrhage, 
all markers associated with plaque insta-
bility on autopsy of human coronary 
arteries. Alexander and colleagues further 
provided data suggesting that IL-1 signal-
ing increases expression of matrix metal-
loproteinase 3 (MMP3) and that relative 

deficiency of MMP3 in the IL-1R1–defi-
cient animals may have contributed to the 
observed atherosclerotic vascular pheno-
types. These results in mice could be inter-
preted to be consistent with a protective 
role of IL-1 signaling in advanced athero-
sclerotic plaques.

Implications for IL-1β inhibition  
in humans
Should the findings of Alexander et al. (21) 
lead to concern about the clinical trial of 
the IL-1β–specific antibody canakinumab 
in subjects with CAD? There are a number 
of reasons to be cautious about extrapolat-
ing these results in mice to the implications 
of inhibiting IL-1β in humans. First, Alex-
ander et al. used mice with complete genet-
ic deletion of the gene encoding IL-1R1,  
whereas the clinical trial utilizes antibody 
inhibition of one of the ligands for this 
receptor, IL-1β. There may be important 
biological differences between complete 
genetic abrogation of IL-1R1 signaling 
and partial antibody inhibition of the  
IL-1β ligand. Second, Alexander et al. used 
germ-line deletion of the gene encoding 
IL-1R1 from early prenatal development, 
whereas the clinical trial utilizes antibody 
inhibition of IL-1β in adults with preexist-
ing CAD. Early loss of IL-1R1 signaling 
might have led to compensatory changes 
that could have influenced the report-
ed phenotype. A genetic experiment in 
mice that comes closer to mimicking the 
human trial would be to induce deletion of 
the gene encoding IL-1R1 (or, preferably, 
that encoding IL-1β itself) in mice with 
established atherosclerotic lesions. Finally, 
while many important insights have been 
gained from the study of atherosclerosis 
in mice, there remains to this day no bona 
fide model of plaque rupture in mice that 
reproduces the pathophysiological events 
that underlie acute myocardial infarction 
and other acute coronary syndromes in 
humans. Thus, the field is dependent on 
careful histological characterization of 
atherosclerotic lesions in mice and com-
parisons with similar histologic findings in 
humans. For example, while the histologi-
cal findings of Alexander et al. were unex-
pectedly interesting (21), the mice lacking 
IL-1R1 were not shown to have increased 
plaque rupture or to develop acute myocar-
dial infarction. However, the findings are 
certainly provocative and hypothesis gen-
erating. They affirm the wisdom of study-
ing three different doses of canakinumab 
in the CANTOS trial and suggest that 

MMP3 might be an interesting biomarker 
to measure with regard to correlation with 
outcomes. More broadly, the work of Alex-
ander et al. (21) illustrates the complexity 
of the interrelationships between inflam-
matory pathways and atherosclerosis and 
rebuts the notion that all inflammation is 
by its nature proatherogenic.

Summary
In summary, the CANTOS trial of 
canakinumab for inhibition of IL-1β in 
patients with CAD to test the effects of 
this biologic on cardiovascular events is 
the first direct test of the “inflammation 
hypothesis” in human atherosclerosis. 
While the study of Alexander et al. (21) 
has revealed additional complexities with 
regard to the role of IL-1 signaling in 
advanced atherosclerosis, the ongoing clin-
ical trial should provide a definitive test of 
whether — and to what degree — interrup-
tion of IL-1β signaling in atherosclerosis 
will reduce cardiovascular events.
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Cardiac ischemia-reperfusion (I-R) injury occurs upon prompt restora-
tion of blood flow to the ischemic myocardium after an acute myocardial 
infarction. Interestingly, many of the features of I-R injury are related to 
impaired mitochondrial signaling and mitochondrial dysfunction. Restor-
ing cardiac energy bioavailability and reduction-oxidation (redox) signal-
ing are therefore important in recovery after I-R injury. In this issue of the 
JCI, Yoshioka and colleagues describe an important and unexpected role 
for thioredoxin-interacting protein (TXNIP) in the control of mitochon-
drial respiration and cell energy metabolism. Their findings could open 
the door for development of TXNIP-targeted therapeutic approaches for 
the treatment of cardiac I-R injury.

After acute myocardial infarction, 
prompt restoration of blood flow to the 
ischemic myocardium — through the use 
of thrombolytic therapy or primary per-
cutaneous coronary intervention — limits 
infarct size and reduces mortality. How-
ever, the restoration of blood flow can 
result in additional myocardial damage, 
a phenomenon referred to as ischemia-
reperfusion (I-R) injury. Despite many 
promising preclinical approaches to 
improve cardiac function after I-R, their 
clinical translation has thus far yielded 
little therapeutic benefit (1). Emerging 
data suggest that thioredoxin-interact-
ing protein (TXNIP) could provide a new 
candidate therapeutic target (2, 3), and a 
clear rationale for this is now provided 
by the work of Yoshioka et al. reported in 
this issue of the JCI (4).

TXNIP controls energy bioavailability 
by altering mitochondrial redox  
state and respiration
Many of the features of I-R injury are relat-
ed to mitochondrial dysfunction manifest 
by the uncoupling of oxidation-phosphor-
ylation (OXPHOS) that leads to decreased 
ATP production and increased ROS gen-
eration (5). Restoring cardiac energy bio-
availability and homeostatic reduction-
oxidation (redox) signaling are therefore 
important in recovery from I-R. Conse-
quently, detailed understanding of the reg-
ulation of mitochondrial homeostasis and 
cellular bioenergetics is key to designing 
therapeutic approaches to improve cardiac 
function after I-R.

It has recently become clear that TXNIP 
plays a critical role in regulating mito-
chondrial homeostasis and cellular bio-
energetics (6–8). TXNIP is the endog-
enous inhibitor of the two isoforms of 
thioredoxin, cytosolic thioredoxin (TRX1) 
and mitochondrial thioredoxin (TRX2), 
which are key regulators of cellular redox 

state insert (9). Because TXNIP inhibits 
TRX2 in the mitochondria, and mito-
chondrial function is critical to recovery 
from I-R injury, it is logical to believe 
that decreasing TXNIP expression should 
improve mitochondrial function and 
recovery from I-R injury.

This hypothesis is supported by recent 
data showing that TXNIP has redox-
dependent effects on mitochondria (Fig-
ure 1 and refs. 7, 8). One set of data indi-
cates that TXNIP-deficient mice exhibit 
increased glycolysis and Akt signaling 
associated with impaired mitochondrial 
fuel oxidation and loss of phosphatase and 
tensin homolog (PTEN) activity (7). Mech-
anistically, the PTEN active site contains 
two critical cysteine residues (Cys-71 and 
Cys-124) that must be in the reduced form 
for proper catalytic activity. Alterations in 
the redox state of those residues are linked 
to the mitochondrial respiration rate 
and to the ability of TRX to interact with 
PTEN, which is regulated by TXNIP. The 
second set of data indicates that TXNIP 
translocates from the nucleus to the mito-
chondria in response to changes in cellu-
lar redox state and targets TRX2 (8). As 
a result, TRX2 activity decreases, which 
induces dissociation of TRX2 from apop-
tosis signal regulating kinase 1 (ASK1) 
and release of its inhibitory effect. ASK1 
dissociation from TRX2 leads to increased 
ASK1 activity and subsequent induction of 
mitochondria-mediated apoptotic signal-
ing, including cytochrome c release and 
caspase-3 activation.
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