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Lower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging
because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are often
falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower
airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale
and in a pediatric population to enable improved diagnosis and treatment remains unclear.

We used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children with acute
respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established
diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates
the host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi
considered pathogenic by a rules-based algorithm.

The host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, alveolar
macrophages, and the interferon response. The integrated classifier achieved a median AUC […]
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Introduction
Lower respiratory tract infection (LRTI) causes more deaths each 
year than any other type of infection and disproportionately affects 
children (1–4). The ability to accurately determine whether LRTI 
underlies or contributes to respiratory failure in the intensive care 
unit and to identify the etiologic pathogens is critical for effective 
and targeted treatments. However, LRTI diagnosis is challenging 
because noninfectious respiratory conditions can appear clinically 
similar. Moreover, no microbiologic diagnosis is obtained in many 
cases of suspected LRTI, since standard tests (such as bacterial cul-
ture) suffer from a narrow spectrum of targets and limited sensi-

BACKGROUND. Lower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is 
challenging because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are 
often falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower 
airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and 
in a pediatric population to enable improved diagnosis and treatment remains unclear.

METHODS. We used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children 
with acute respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established 
diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates the 
host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi considered 
pathogenic by a rules-based algorithm.

RESULTS. The host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, 
alveolar macrophages, and the interferon response. The integrated classifier achieved a median AUC of 0.986 and increased 
the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n = 94), the integrated 
classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those.

CONCLUSION. Lower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous 
cohort of critically ill children through integration of host, pathogen, and microbiome features.
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for improved LRTI diagnosis in a large and heterogeneous cohort 
and reveal the importance of profiling both the pulmonary immune 
response and microbiome in a pediatric population.

Results
Patient cohort and LRTI adjudication. We enrolled children with 
acute respiratory failure requiring mechanical ventilation at 8 
hospitals in the United States between February 2015 and Decem-
ber 2017, as previously described (9, 25). TA was collected with-
in 24 hours of intubation and underwent mNGS of RNA to assay 
host gene expression and detect respiratory microbiota (Figure 
1). High-quality host gene expression and microbial data were 
obtained for 261 patients (Supplemental Data File 1).

Adjudication of LRTI status was performed without knowl-
edge of the mNGS results and depended on the combination of 
two elements: (a) a retrospective clinical diagnosis made by study-
site clinicians, who reviewed all clinical, laboratory, and imaging 
data available at the end of the admission, and (b) any standard-
of-care respiratory microbiologic diagnostics (NP swab viral PCR 
and/or TA culture) performed on specimens collected during the 
first 48 hours of intubation. Patients were assigned to their LRTI 
status group as follows: (a) Definite, if clinicians made a diagno-
sis of LRTI and the patient had clinical microbiologic findings; 
(b) Suspected, if clinicians made a diagnosis of LRTI, but there 
were no microbiologic findings; (c) Indeterminate, if no diagnosis 
of LRTI was made despite some microbiologic findings; and (d) 
No Evidence, if clinicians identified a clear noninfectious cause 
of acute respiratory failure and no clinical or microbiologic sus-
picion of LRTI arose. We note that comprehensive microbiologic 
testing was not always performed in the No Evidence group in the 
absence of clinical suspicion.

The Definite and No Evidence groups were used to develop 
the metagenomic classifiers and to evaluate their performance by 
cross-validation due to the high degree of confidence in their clin-
ical diagnoses (Figure 1). The patients in the Definite group were 

tivity (3, 5–8). At the same time, children are especially susceptible 
to false positive diagnoses due to frequent incidental carriage of 
potentially pathogenic microbes (3, 5, 9–12). As such, LRTI treat-
ment is often empirical, leading to antimicrobial overuse, selection 
for resistant pathogens, and adverse outcomes (13–15).

Profiling host gene expression in the blood has shown promise 
as an innovative modality for diagnosing respiratory infection in 
hospitalized patients (16, 17). However, this approach has not been 
well studied in the diagnostically challenging critically ill pediatric 
population. Moreover, while blood gene expression can in some 
cases distinguish between the response to viral and bacterial infec-
tion (16–21), it cannot pinpoint the specific pathogens active in the 
respiratory tract, which is critical for optimal antimicrobial therapy.

Metagenomic next-generation sequencing (mNGS) of lower 
airway samples (e.g., tracheal aspirate [TA]) has the potential to 
detect pathogens and host gene expression signatures of LRTI (22). 
Whether such an approach can be successfully applied at scale for 
the purpose of clinical diagnosis remains unclear. Its applicabili-
ty in a pediatric population has also never been examined despite 
well-established age-related differences in LRTI epidemiology (3, 
9), rates of incidental pathogen carriage (3, 5, 9), and the immune 
response to infection (23, 24). Furthermore, to our knowledge, no 
metagenomic approach for LRTI diagnosis thus far integrates host 
and microbial features into a single diagnostic output, a crucial 
step toward streamlined clinical application.

Here, we performed metagenomic RNA-Seq of TA in a pro-
spective cohort of 261 children with acute respiratory failure requir-
ing mechanical ventilation. We developed a host gene expression 
classifier for LRTI by training on patients with an LRTI diagnosis 
supported by clinical microbiologic testing and patients with respi-
ratory failure due to noninfectious causes. We then developed a 
classifier that integrates host, pathogen, and microbiome features to 
accurately diagnose LRTI and identify the likely causal pathogens, 
including in cases with negative clinical microbiologic testing. Our 
results demonstrate the feasibility of lower airway metagenomics 

Figure 1. Study overview. Pediatric patients with 
acute respiratory failure requiring mechanical 
ventilation were clinically adjudicated into 4 LRTI 
status groups. The patients in the Definite and 
No Evidence groups, whose LRTI status was pre-
sumed to be known, were used to develop an inte-
grated host/microbe mNGS classifier for LRTI and 
to evaluate its performance by cross-validation. 
The classifier was then applied to the patients 
in the Suspected and Indeterminate groups, 
whose LRTI status was considered uncertain. The 
integrated mNGS classifier takes into account a 
host probability of LRTI, derived from the host 
gene counts, and features of any viral or bacterial/
fungal pathogens, derived from the nonhost 
(microbial) taxon counts.
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gene set enrichment analysis identified elevated expression of 
pathways involved in the immune response to infection in the 
Definite group (Supplemental Figure 2B and Supplemental Data 
File 3). Pathways related to the interferon response, a hallmark of 
antiviral innate immunity, were most strongly upregulated, con-
sistent with the high prevalence of viral infections in the Definite 
group. Additional immune pathways upregulated in this group 
included Toll-like receptor signaling, cytokine signaling, inflam-
masome activation, neutrophil degranulation, antigen processing, 
and B cell and T cell receptor signaling. Conversely, pathways with 
reduced expression in the Definite group included translation, cil-
ium assembly, and lipid metabolism (Supplemental Figure 2B and 
Supplemental Data File 3).

Because we observed a clear host signature of infection, we 
developed a classification approach to distinguish the patients in 
the Definite and No Evidence groups based on gene expression 
and evaluated its performance by 5-fold cross-validation. For each 
train/test split, we (a) used LASSO logistic regression on the sam-
ples in the training folds to select a parsimonious set of informa-
tive genes, (b) trained a random forest classifier using the selected 
genes, and (c) applied it to the samples in the test fold to obtain a 
host probability of LRTI.

Our approach yielded a median area under the receiver oper-
ating characteristic curve (AUC) of 0.967 (range, 0.953–0.996), 
with the number of genes selected for use in the classifier ranging 
from 11 to 25 across the 5 train/test splits (Figure 2A and Supple-
mental Table 1). Using a 50% out-of-fold probability threshold 
to classify a patient as suffering from LRTI (LRTI+), the clas-
sifier assigned 92% of patients in the Definite group and 80% 

39% female, with a median age of 0.5 years (IQR, 0.2–1.8), while 
the patients in the No Evidence group were 50% female, with a 
median age of 6.5 years (IQR, 1.5–12.9; Table 1 and Supplemental 
Figure 1; supplemental material available online with this article; 
https://doi.org/10.1172/JCI165904DS1). The difference in the 
age distribution of these groups (P < 0.001, Mann-Whitney test) 
reflected recognized epidemiological distinctions in the condi-
tions that typically lead to respiratory failure in very young versus 
older children (3, 5).

Within the Definite group, 95% of patients were intubated by 
2 days from hospital admission, indicative of community-acquired 
infection (Table 1). Clinical microbiologic testing identified viral 
infection alone in 46% of patients, bacterial infection alone in 14% 
of patients, and viral/bacterial coinfection in 40% of patients. 
The most common pathogens were respiratory syncytial virus 
(RSV) and Haemophilus influenzae, which frequently co-occurred 
(9). Diagnoses in the No Evidence group included trauma, neuro-
logical conditions, cardiovascular disease, airway abnormalities, 
ingestion of drugs/toxins, and sepsis that was clearly unconnected 
to LRTI. Nevertheless, most patients received antibiotic treatment 
by the time of TA sample collection in both the Definite (96%) and 
No Evidence (84%) groups (Table 1).

Classification of LRTI status based on TA host gene expression 
features. We first compared TA host gene expression between 
the Definite and No Evidence groups to determine whether it 
could distinguish patients based on LRTI status, regardless of the 
underlying cause of infection. We identified 4,718 differentially 
expressed genes at a Benjamini-Hochberg–adjusted P < 0.05 (Sup-
plemental Figure 2A and Supplemental Data File 2). As expected, 

Table 1. Demographic and clinical cohort characteristics

Definite (n = 117) No Evidence (n = 50) P valueA Suspected (n = 57) Indeterminate (n = 37)
Female, n (%) 45 (38.5%) 25 (50.0%) 0.18 26 (45.6%) 16 (43.2%)
Male, n (%) 72 (61.5%) 25 (50.0%) 0.18 31 (54.4%) 21 (56.8%)
Age, median (IQR) 0.5 (0.2–1.8) 6.5 (1.5–12.9) <0.001 1.7 (0.5–6.0) 1.5 (0.6–10.8)
Race

White, n (%) 69 (59.0%) 30 (60.0%) 0.99 33 (57.9%) 20 (54.1%)
Black or African American, n (%) 26 (22.2%) 7 (14.0%) 0.29 11 (19.3%) 10 (27.0%)
Asian, n (%) 5 (4.3%) 6 (12.0%) 0.088 2 (3.5%) 2 (5.4%)
American Indian or Alaskan Native, n (%) 1 (0.9%) 1 (2.0%) 0.99 1 (1.8%) 0 (0.0%)
Native Hawaiian or other Pacific Islander, n (%) 1 (0.9%) 0 (0.0%) 0.99 0 (0.0%) 0 (0.0%)
Multiracial, n (%) 3 (2.6%) 1 (2.0%) 0.99 1 (1.8%) 1 (0.03%)
Unknown, n (%) 12 (10.3%) 5 (10.0%) 0.99 9 (15.8%) 4 (10.8%)

Hispanic or Latino, n (%) 17 (14.5%) 6 (12.0%) 0.81 14 (24.6%) 7 (18.9%)
ComorbiditiesB, n (%) 38 (32.5%) 26 (52.0%) 0.024 34 (59.7%) 14 (37.8%)
Immunosuppressed, n (%) 3 (2.6%) 7 (14.0%) 0.0085 5 (8.8%) 6 (16.2%)
Admission category

Medical, n (%) 117 (100.0%) 28 (56.0%) <0.001 57 (100.0%) 29 (78.4%)
Surgical, n (%) 0 (0.0%) 15 (30.0%) <0.001 0 (0.0%) 3 (8.1%)
Trauma, n (%) 0 (0.0%) 7 (14.0%) < 0.001 0 (0.0%) 4 (10.8%)

Time from hospital admission to intubation  
in hours, median (IQR)

4.8 (0.0–23.6) 3.5 (0.0–20.9) 0.60 2.6 (0.0–15.9) 1.0 (0.0–26.5)

Antibiotics on or before sample date, n(%) 112 (95.7%) 42 (84.0%) 0.022 51 (89.5%) 30 (69.8%)
ANominal P values comparing patients in the Definite and No Evidence groups. Mann-Whitney test was used for all continuous variables. Fisher’s exact 
test was used for all categorical variables. BCCC, complex chronic conditions (62). 
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were FABP4, encoding a fatty acid-binding protein considered a 
marker of alveolar macrophages, whose expression in the lung 
decreases in patients with LRTI, including COVID-19 (30–32), 
and RBP4, encoding a retinol-binding protein, whose expression 
in the lung also sharply decreases following onset of LRTI (30) and 
whose expression by macrophages in vitro is depressed by inflam-
matory stimuli (33) (Figure 2C and Supplemental Table 2).

We examined the expression of the final classifier genes as 
a function of patient age to confirm that their selection was not 
influenced by the different age distributions of the Definite and 
No Evidence groups (Supplemental Figure 3). Reassuringly, we 
found no significant difference in the expression of the 14 genes 
when comparing patients in the No Evidence group under the age 
of 4 (n = 23; median age, 1.3 years) and over the age of 4 (n = 27; 
median age, 12.5 years) (Supplemental Table 3A). Furthermore, 
we found that expression of 12 of the genes remained significantly 
different when comparing only children under the age of 4 in the 
Definite (n = 100; median age, 0.4 years) and No Evidence (n = 23; 
median age, 1.3 years) groups (Supplemental Table 3B).

Detection of pathogens by mNGS and definition of microbial clas-
sification features. We proceeded to analyze the microbial mNGS 

of patients in the No Evidence group according to their clinical 
LRTI adjudication (Figure 2B).

Having validated the performance of our approach by 
cross-validation, we then applied LASSO logistic regression to all 
the patients in the Definite and No Evidence groups to select a final 
set of genes (n = 14) for later classification of patients with Sus-
pected or Indeterminate LRTI status (Figure 2C and Supplemental 
Table 2). As expected, the genes in the final classifier set that were 
assigned high absolute regression coefficients were also repeatedly 
selected in the cross-validation procedure (Supplemental Table 2).

The selected genes with the most positive regression coeffi-
cients, corresponding to higher expression in the Definite group, 
were GNLY, encoding an antibacterial peptide present in cytolytic 
granules of cytotoxic T cells and natural killer cells (26); SLC38A2, 
encoding a glutamine transporter upregulated in CD28-stimulated 
T cells (27, 28); FFAR3, encoding a G protein–coupled receptor acti-
vated by short-chain fatty acids that is induced by alveolar macro-
phages upon infection (29); and the interferon-stimulated genes 
PSMB8, ISG15, and IRF1 (Figure 2C and Supplemental Table 2).

The selected genes with the most negative regression coeffi-
cients, corresponding to lower expression in the Definite group, 

Figure 2. Host gene expression clas-
sifier for LRTI diagnosis. (A) Receiver 
operating characteristic (ROC) curve of 
the host gene expression classifier in 
each of the test folds. The median and 
range of the area under the curve (AUC) 
are indicated. (B) The number and per-
centage of patients in the Definite and 
No Evidence groups who were classified 
according to their clinical adjudication 
using a 50% out-of-fold probability 
threshold. (C) Heatmap showing stan-
dardized variance-stabilized expression 
values across all patients (columns) 
for the 14 final classifier genes (rows) 
selected from the full Definite and No 
Evidence data set. Shown are the LRTI 
adjudication (top colored horizontal 
bar) and out-of-fold LRTI probability 
(top dot plot) of each patient and the 
regression coefficient of each selected 
gene (side bar plot).
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group (Supplemental Figure 4D). In contrast, patients in the No 
Evidence group with an RBM-identified pathogen did not typi-
cally exhibit a loss of bacterial α-diversity (Supplemental Figure 
4D), and in such cases, the RBM-identified species was far less 
dominant (Figure 3F). We, therefore, defined the patient’s “bac-
terial score” for use in an integrated host/microbe classifier as the 
proportion of the nonhost counts assigned to the RBM-identified 
pathogens, a measure of relative dominance (Figure 3F).

We next sought to compare the bacterial and fungal patho-
gens identified by mNGS with those found by culture of TA sam-
ples (Supplemental Data File 4). Importantly, mNGS can detect 
organisms that are challenging to grow in culture or are inhibited 
by previous antibiotic treatment, and the RBM selects the likeliest 
pathogen based on a global view of the microbiome. Despite these 
inherent differences between culture and the RBM, we found that 
in 44 of 63 (70%) patients in the Definite group who had a pos-
itive culture, at least 1 pathogen identified by the RBM was also 
found by culture (Supplemental Figure 4E). In the remaining 19 
patients, the RBM identified a different species than culture (n = 
7) or no pathogen at all (n = 12). Even in these cases, the species 
grown in culture was usually present in the mNGS data, but other 
species were more dominant (Supplemental Figure 4E). The RBM 
also identified a potential pathogen in 27 of 54 (50%) patients in 
the Definite group lacking a positive culture (Supplemental Figure 
4E). Most cases where the species grown in culture was absent 
from the mNGS data after background filtering involved Staphylo-
coccus aureus, Streptococcus species other than S. pneumoniae, and 
E. coli (Supplemental Figure 4F).

Host gene expression differences between viral and bacterial LRTI. 
Overall, mNGS identified viral and/or bacterial pathogens in 114 
of 117 (97%) patients in the Definite group. Having established by 
mNGS which patients had an exclusively bacterial infection (n = 
7), an exclusively viral infection (n = 36), or a viral/bacterial coin-
fection (n = 71), we went back and examined how effectively the 
top host classifier genes captured these different scenarios (Sup-
plemental Figure 5A). As expected, some of the interferon-stim-
ulated genes (e.g., ISG15) provided much more discriminating 
power for patients with a viral infection as compared with those 
with a purely bacterial infection. Reassuringly, however, several 
other classifier genes behaved similarly regardless of the under-
lying infection type.

We then asked more broadly whether host gene expression 
differed between patients with any bacterial LRTI (including viral 
coinfection) and patients with purely viral LRTI. We identified 108 
differentially expressed genes at a Benjamini-Hochberg–adjusted 
P < 0.05 (Supplemental Figure 5B and Supplemental Data File 
2) and found that genes related to neutrophil degranulation and 
cytokine signaling were enriched in patients with any bacterial 
LRTI (Supplemental Figure 5C and Supplemental Data File 3). 
These results suggest the potential for developing in future work a 
rule-out classifier for bacterial infection that could be used to limit 
unnecessary antibiotic usage.

Classification of LRTI status based on integration of host and 
microbial features. Next, we asked whether integrating the host 
and microbial features could improve the performance of meta-
genomic LRTI classification. We fit a logistic regression model on 
the following features: (a) the LRTI probability output of the host 

data to nominate likely pathogens whose features could be inte-
grated into the LRTI classifier. We processed the TA samples 
alongside water controls through the Chan Zuckerberg ID (CZ-ID) 
metagenomic analysis pipeline (https://czid.org/) to obtain a 
count matrix of microbial taxa. The water controls allowed us to 
generate a background count distribution for each taxon, which 
modeled the contribution of contamination by microbes present 
in the laboratory environment or reagents.

Viruses with known ability to cause LRTI that were present 
at an abundance statistically exceeding their background distri-
bution were considered probable pathogens. By this criterion, we 
detected viruses in the lungs of 107 of 117 (91%) patients in the 
Definite group, with RSV being the most prevalent (Figure 3A). 
Among patients in the No Evidence group, 8 of 50 (16%) also had 
viruses detected by mNGS, which were probably missed clini-
cally in the absence of characteristic symptoms. We defined the 
summed abundance of all pathogenic viruses detected in a patient, 
measured in reads-per-million (rpM), as the patient’s “viral score” 
for later use in an integrated host/microbe classifier (Figure 3B).

Because most patients in the Definite group had a positive 
NP swab viral PCR test, we could compare the viruses detected 
by PCR and mNGS (Supplemental Data File 4). The comparison 
was complicated, however, by the fact that PCR was performed on 
upper airway samples, so a virus detected by PCR was not neces-
sarily present in the lower airway. Bearing this in mind, we found 
that 99 of 101 (98%) patients in the Definite group with a viral 
PCR hit also had a virus detected by mNGS, and both approaches 
detected at least 1 virus in common in 91 (92%) of those patients 
(Supplemental Figure 4A). Most cases in which NP swab PCR 
detected a virus, but mNGS did not, involved adenovirus (Supple-
mental Figure 4B). mNGS alone detected viruses in 8 of 16 (50%) 
patients in the Definite group lacking a viral PCR hit (Supplemen-
tal Figure 4A). We additionally performed viral PCR on the same 
TA samples subjected to mNGS in a subset of patients in the Defi-
nite group (n = 21), and 96% of PCR hits were detected by mNGS 
in this direct comparison (Supplemental Table 4).

Bacterial and fungal taxa in the mNGS data also underwent 
background filtering to retain only those present at an abundance 
statistically exceeding their background distribution based on 
water controls. Because incidental carriage of potentially patho-
genic bacteria is common in children, we additionally applied a 
previously published algorithm to distinguish possible pathogens 
from commensals, called the rules-based model (RBM) (9, 22). 
The RBM identifies bacteria and fungi with known pathogenic 
potential that are relatively dominant in a sample (Figure 3, C and 
D), based on the principle that uncontrolled growth of a pathogen 
leads to reduced lung microbiome α-diversity in the context of 
LRTI (22, 34–36) (Supplemental Figure 4, C and D).

The RBM identified possible bacterial/fungal pathogens in 78 
of 117 (66%) patients in the Definite group, with the most common 
being H. influenzae, Moraxella catarrhalis, and Streptococcus pneu-
moniae (Figure 3E). The RBM also identified potential bacterial/
fungal pathogens in 17 of 50 (34%) patients in the No Evidence 
group. Patients in the Definite group with an RBM-identified 
pathogen exhibited markedly lower bacterial α-diversity com-
pared with patients in the Definite group without an RBM-iden-
tified pathogen and compared with patients in the No Evidence 
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Figure 3. Metagenomic identification of respiratory pathogens. (A) Bar plot showing the distribution of viruses detected by mNGS after background fil-
tering in patients in the Definite and No Evidence groups. RSV, respiratory syncytial virus; HRV, human rhinovirus; PIV, parainfluenza virus; HMPV, human 
metapneumovirus; HCoV, human coronavirus; IV, influenza virus; ADV, adenovirus; HBoV, human bocavirus; CMV, cytomegalovirus. (B) Box plot showing 
the log10-transformed summed abundance, measured in reads-per-million (rpM), of all pathogenic viruses detected in each patient, separated by group. 
Prior to log10-transformation, the minimum non-zero rpM value in the data set was divided by 10 and added to all the samples. Horizontal lines denote 
the median, box hinges represent the interquartile range (IQR), and whiskers extend to the most extreme value no greater than 1.5 × IQR from the hinges. 
(C) Analysis steps applied as part of the rules-based model (RBM), a heuristic approach designed to identify potential bacterial/fungal pathogens in the 
context of LRTI. (D) Graphical illustration of the RBM results in two representative patients from the Definite group. Each dot represents a bacterial/fun-
gal species most abundant in its respective genus. Species above the maximum drop-off in rpM are colored in red; otherwise, the color is white. Species on 
the list of known respiratory pathogens have black outlines; otherwise, the outline is gray. (E) Bar plot showing the distribution of bacteria/fungi called as 
potential pathogens by the RBM in patients in the Definite and No Evidence groups. Strep. spp., Streptococcus species other than S. pneumoniae. (F) Box 
plot showing the proportion of the RBM-identified pathogen(s) out of all nonhost counts in each patient, separated by group. Horizontal lines denote the 
median, box hinges represent the interquartile range (IQR), and whiskers extend to the most extreme value no greater than 1.5 × IQR from the hinges.
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classifier, (b) the summed abundance, measured in rpM, of any 
pathogenic viruses present after background filtering (the viral 
score), and (c) the proportion of the potentially pathogenic bacte-
ria/fungi identified by the RBM out of all nonhost read counts (the 
bacterial score) (Figure 4A). As expected, the host and microbial 
features were correlated across most samples, but some notable 
exceptions were observed (Supplemental Figure 6).

The integrated classifier achieved a median AUC of 0.986 
(range, 0.953–1.000) when assessed by 5-fold cross-validation 
(Figure 4B and Supplemental Table 5), applying the same train/
test splits from the host-only cross-validation. Using a 50% out-

of-fold probability threshold, the integrated classifier assigned 
109 of 117 (93%) patients in the Definite group as LRTI+ and 44 of 
50 (88%) patients in the No Evidence group as LRTI– (Figure 4C 
and Supplemental Table 6). Compared with the host-only classi-
fier, a net of 5 additional patients were now classified according 
to their clinical adjudication, and the confidence of patient clas-
sifications increased, as reflected by more extreme output proba-
bilities (Figure 4D). Reassuringly, all patients in the No Evidence 
group with a diagnosis of nonpulmonary sepsis (n = 6) were classi-
fied as LRTI–, despite suffering an infection elsewhere in the body 
(Supplemental Table 7). We note that at a 15% out-of-fold proba-

Figure 4. Integrated host/microbe classifier for LRTI diagnosis. (A) Schematic of the integrated host/microbe classifier. (B) Receiver operating charac-
teristic (ROC) curve of the integrated classifier in each of the test folds. The median and range of the area under the curve (AUC) are indicated. (C) Bar plot 
showing the number and percentage of patients in the Definite and No Evidence groups who were classified according to their clinical adjudication using 
a 50% out-of-fold probability threshold. (D) The shift in out-of-fold LRTI probability from the host classifier to the integrated classifier for patients in the 
Definite (left) and No Evidence (right) groups. Dark connecting lines highlight patients whose LRTI probability shifted across the 50% threshold.
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Discussion
LRTI involves a dynamic relationship among pathogen, lung 
microbiome, and host response that is not captured by existing 
clinical diagnostic tests. Here, we demonstrated that mNGS of 
lower respiratory samples enables accurate LRTI diagnosis based 
on features of each of these key elements in critically ill children, a 
demographic facing a high burden of LRTI. We built on proof-of-
concept work in adults (22) to develop the first, to our knowledge, 
fully integrated host/microbe LRTI diagnostic classifier and vali-
dated its performance in a large, multicenter prospective cohort.

Incidental carriage of pathogens in the respiratory tract is 
common in children (3, 5, 9–12). Consistent with this, detection of 
a pathogen by mNGS was in many cases insufficient for accurate 
LRTI diagnosis in our cohort. Among patients in the No Evidence 
group, 40% had potentially pathogenic microbes detected by 
mNGS even after application of the RBM (for bacteria and fun-
gi). This is notably different from adults, for whom both clinical 
and metagenomic studies have demonstrated much lower rates of 

bility threshold, the integrated classifier’s sensitivity for LRTI in 
the Definite group rose to more than 98%, suggesting a use case 
as a rule-out test for LRTI.

Finally, we trained the integrated host/microbe classifier on 
all the patients in the Definite and No Evidence groups and then 
applied it to the patients in the Suspected and Indeterminate 
groups, whose clinical diagnosis was less certain. The integrated 
classifier indicated that 37 of 57 (65%) patients in the Suspect-
ed group were LRTI+ compared with 12 of 37 (32%) patients in 
the Indeterminate group (Figure 5A), consistent with the stron-
ger clinical suspicion of LRTI in the former case. Across all 49 
patients classified as LRTI+ in these groups, likely pathogens 
(viral, bacterial, or fungal) were identified in 48 patients (98%). 
Pathogens detected included common (e.g., rhinovirus, H. influ-
enzae), uncommon (e.g., bocavirus, parechovirus), and difficult to 
culture (e.g., Mycoplasma pneumoniae) microbes (Figure 5B). We 
also designed a visual summary incorporating all 3 inputs of the 
integrated classifier and its output LRTI probability (Figure 5C).

Figure 5. Application of the integrated classifier to patients in the Suspected and Indeterminate groups. (A) Bar plot showing the number and percent-
age of patients in the Suspected and Indeterminate groups who were classified as LRTI+ by the integrated classifier using a 50% probability threshold. 
(B) Viruses detected by mNGS and bacteria/fungi identified by the rules-based model (RBM) across the patients classified as LRTI+ in the Suspected and 
Indeterminate groups. HRV, human rhinovirus; RSV, respiratory syncytial virus; PIV, parainfluenza virus; HBoV, human bocavirus; HMPV, human metap-
neumovirus; HPeV, human parechovirus; IV, influenza virus; HCoV, human coronavirus. (C) Overview of inputs and output of the integrated classifier for 
all patients in the Suspected and Indeterminate groups. Top bars denote the integrated probability of LRTI and are colored by patient group; black dots 
represent the input host LRTI probability; bottom vertical bars show the input log10-transformed viral and bacterial scores. Dashed lines indicate the 50% 
LRTI probability threshold and the 15% rule-out threshold.
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A key advantage of mNGS is the capacity to provide a microbi-
ologic diagnosis when traditional clinical testing returns negative, 
as in an estimated 20%–60% of suspected community- or hos-
pital-acquired pneumonia cases (3, 6–8). Indeed, the integrated 
mNGS classifier confirmed LRTI in 65% of children with suspect-
ed infection but negative clinician-ordered testing in our cohort 
and in 32% of patients with respiratory failure of indeterminate 
etiology. It also provided a microbiologic diagnosis in all but one of 
these patients, highlighting the potential to inform pathogen-tar-
geted versus empirical treatment.

Acute respiratory illnesses are a leading contributor to inap-
propriate antimicrobial use, a practice driven by challenges in dis-
tinguishing LRTI from noninfectious causes of respiratory failure 
or distinguishing bacterial from viral LRTI. Reflecting this is the 
observation that 90% of children in our cohort received empirical 
antimicrobials by the time of sample collection, including 84% in 
the No Evidence group. Host/microbe mNGS offers an opportuni-
ty for improved antimicrobial stewardship, particularly in clinical-
ly uncertain cases, by providing a probability of infection and by 
nominating the likely pathogen. In fact, we found that the integrat-
ed classifier could be tuned to achieve more than 98% sensitivity 
for LRTI detection, highlighting its potential use as a rule-out test 
to help exclude the need for antimicrobials. Moreover, our host 
gene expression analysis revealed potential for development of a 
host classifier specifically for bacterial infection.

Our study has several limitations that should be kept in mind. 
In developing the mNGS classifiers, we relied on retrospective 
clinical adjudication for designating the “ground truth” LRTI sta-
tus of patients in the cohort. Retrospective adjudication, which 
considers the context of patient trajectory and clinical data not 
available at the time of initial admission, was the only practical 
approach. However, by nature, it is not infallible and was subject 
to variability in clinical and microbiologic practices across study 
sites and to the known limitations of standard microbiologic diag-
nostics. Moreover, comprehensive microbiologic testing was not 
always performed in the No Evidence group in the absence of clin-
ical suspicion of LRTI, which likely allowed a few patients into this 
group who were suffering from unrecognized infection on top of 
their primary diagnosis. It is thus likely that some patients in the 
No Evidence group deemed LRTI+ by the mNGS classifier were 
not truly misclassified, but rather incorrectly adjudicated. Study 
limitations also include the different age distributions of compar-
ator groups and the relative paucity of purely bacterial infections.

mNGS provides a broad screen for bacteria, viruses, and other 
pathogens to overcome the limitations of traditional clinical micro-
biologic tests. Assays utilizing this technique are already in use in 
hospitals for microbe detection in typically sterile compartments, 
such as blood (sepsis) and cerebrospinal fluid (meningitis), with 
turnaround within 48 hours (39, 40). mNGS promises to improve 
the diagnosis and treatment of respiratory infections as well (9, 22, 
41–45) but has not yet seen clinical translation in this area. Respi-
ratory samples present a special challenge because they harbor 
microbial communities, including potential pathogens, even in 
states of health. Host gene expression can help distinguish bona 
fide infection, and several studies have demonstrated the utility of 
blood transcriptional profiling for this purpose (16, 17, 20). How-
ever, this approach precludes identification of the etiologic respi-

incidental pathogen carriage (7, 22). Profiling the host response is, 
thus, particularly important for pediatric LRTI diagnosis, as it pro-
vides evidence of an immune response to infection.

Remarkably, an LRTI diagnostic classifier based on host gene 
expression performed very well on its own, with a median AUC of 
0.967 by cross-validation. The host signature was driven by acti-
vation markers of T cells, alveolar macrophages, and the inter-
feron response and successfully captured cases of viral infection, 
bacterial infection, or coinfection. This performance suggests the 
gene signature could be incorporated into a clinical PCR assay as 
a standalone rapid diagnostic. It is likely that an even more parsi-
monious signature than the one used in the mNGS classifier would 
suffice, as 6 genes exhibited the most discriminating power.

The integrated host/microbe classifier achieved a median 
AUC of 0.986 by cross-validation. The incorporation of microbi-
al features increased the confidence of LRTI classification, even 
though relatively few patients switched their assigned diagnosis. 
It is likely that the integrated classification approach will prove 
even more valuable in settings where the host signature may not 
perform as well on its own (e.g., immune-compromised patients) 
and will generalize better to future cohorts. Moreover, it provides 
clinicians with a unified framework both for LRTI diagnosis and 
etiologic pathogen identification.

Unlike for host gene expression, the microbial features in the 
integrated classifier were not automatically selected by training 
on identified taxa and their features in the Definite and No Evi-
dence groups. Such an approach was not feasible given the sparse 
presence of individual respiratory pathogens across patients in the 
cohort, especially in the No Evidence group. As larger data sets are 
generated, it may be possible to use machine-learning approaches 
to capture the “null distribution” of incidentally carried pathogens 
in the lower respiratory tract and identify outlier cases that signal 
LRTI. Even then, designating a specific microbe as a “true” causal 
pathogen for training purposes would be nontrivial, especially in 
cases of coinfection. Instead, we defined summary viral and bac-
terial scores motivated by accumulated clinical and microbiologic 
knowledge. For bacteria and fungi, we took advantage of the col-
lapse of lung microbiome diversity in the setting of pathogen dom-
inance, an established feature of LRTI (22, 34, 35).

Comparison of mNGS and clinical microbiologic testing was 
complicated by inherent differences in the anatomical site of test-
ing (upper respiratory viral PCR vs. lower respiratory mNGS) or the 
question addressed (growth in culture vs. dominance by mNGS) as 
well as by heterogeneity in microbiologic practices among study 
sites. Nevertheless, when clinical testing identified a microbe, it 
was in most cases present in the mNGS data. A notable excep-
tion was adenovirus, which was consistently not found by mNGS 
when detected by NP swab PCR. This could reflect sensitivity lim-
itations of RNA-Seq for a DNA virus or true absence in the lower 
airway. Our secondary analysis revealing higher concordance of 
PCR and mNGS when performed on the same lower respiratory 
specimens, however, argues for the latter possibility. Future work 
could examine targeted enrichment strategies (37, 38) to improve 
detection of this or any other pathogen that proves challenging to 
capture by mNGS. Regardless, our findings highlight the value of 
concomitant assessment of the host response, which can accurate-
ly inform LRTI status even when pathogens are not detected.
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and imaging data available at the end of the admission, and (b) any 
standard-of-care respiratory microbiologic diagnostics (NP swab viral 
PCR and/or TA culture) performed on specimens collected during the 
first 48 hours of intubation. Patients were assigned to their LRTI status 
group as follows: (a) Definite, if clinicians made a diagnosis of LRTI 
and the patient had clinical microbiologic findings; (b) Suspected, if 
clinicians made a diagnosis of LRTI, but there were no microbiologic 
findings; (c) Indeterminate, if no diagnosis of LRTI was made despite 
some microbiologic findings; and (d) No Evidence, if clinicians iden-
tified a clear noninfectious cause of acute respiratory failure and no 
clinical or microbiologic suspicion of LRTI arose. We note that com-
prehensive microbiologic testing was not always performed in the No 
Evidence group in the absence of clinical suspicion.

Sample collection, processing, and mNGS. TA was collected with-
in 24 hours of intubation, mixed 1:1 with DNA/RNA Shield (Zymo), 
and frozen at –80°C. RNA was extracted from 300 μL patient TA 
using bead-based lysis and the Allprep DNA/RNA kit (Qiagen), which 
included a DNase treatment step. RNA was reverse transcribed to gen-
erate cDNA, and sequencing library preparation was performed using 
the NEBNext Ultra II Library Prep Kit (New England BioLabs). RNA-
Seq libraries underwent 150 bp paired-end sequencing on an Illumina 
Novaseq 6000 instrument.

Host gene expression analysis. Following demultiplexing, sequenc-
ing reads were pseudo-aligned with kallisto (49) (including bias cor-
rection) to an index consisting of all transcripts associated with human 
protein coding and long noncoding RNA genes (ENSEMBL v.99). We 
excluded samples with less than 500,000 estimated counts associat-
ed with transcripts of protein-coding genes. Gene-level counts were 
generated from the transcript-level abundance estimates using the R 
package tximport (50), with the scaledTPM method.

Genes were retained for differential expression (DE) analysis if 
they had at least 10 counts in at least 20% of the samples included in 
the analysis. DE analyses were performed with the R package limma 
(51), using quantile normalization and the voom method. P values were 
calculated using moderated t tests (2 tailed), as implemented in lim-
ma, and adjusted for multiple hypothesis testing with the Benjamini- 
Hochberg method. Tests with P < 0.05 were considered significant. 
Full DE results comparing (a) patients in the Definite and No Evidence 
groups and (b) patients in the Definite group with any bacterial LRTI 
and with purely viral LRTI are provided as Supplemental Data File 2.

Gene set enrichment analyses (52) were performed using the 
fgseaMultilevel function in the R package fgsea (53), which calculates 
pathway P values using an adaptive, multilevel splitting Monte Car-
lo approach. The analysis was applied to REACTOME (54) pathways 
with a minimum size of 10 genes and a maximum size of 1,500 genes. 
All genes from the respective DE analysis were included as input, pre-
ranked by the DE test statistic. The gene sets shown in the figures were 
manually selected to reduce redundancy and highlight diverse biolog-
ical functions from among those with a Benjamini-Hochberg–adjust-
ed P < 0.05. Full gene set enrichment analyses results are provided as 
Supplemental Data File 3.

Classification of LRTI status based on host gene expression features. 
Genes with at least 10 counts in at least 20% of the patients in the 
Definite (n = 117) and No Evidence (n = 50) groups were used as input 
for the host-based LRTI classification (n = 13,323). We applied a vari-
ance-stabilizing transformation to the gene counts, as implemented in 
the R package DESeq2 (55).

ratory pathogens. Simultaneous analysis of host and microbe in 
respiratory samples informs both questions, and it is increasingly 
being applied in studies of the upper and lower airway (22, 46–48). 
Our work now provides the first, to our knowledge, fully integrated 
host/microbe LRTI diagnostic classifier from lower airway mNGS, 
applicable across pathogen types, thus setting the stage for clinical 
implementation in the relatively near future.

We envision the approach for LRTI diagnosis by lower airway 
host/microbe mNGS outlined in this study being used at the time 
of intubation for critically ill children with acute respiratory fail-
ure, as a complement to traditional culture and PCR-based micro-
biologic testing. Our approach would need to be independently 
validated and its effect on clinical outcomes would need to be 
evaluated in a randomized clinical trial before deployment in 
the hospital. Future work should also examine the trajectory of 
patient LRTI classification over time, as infection resolves, and 
how well the classifier might generalize to a similarly large and 
heterogeneous adult cohort.

Methods
Study cohort. We conducted a secondary analysis of a prospective 
cohort study of mechanically ventilated children admitted to 8 pedi-
atric intensive care units in the National Institute of Child Health and 
Human Development’s Collaborative Pediatric Critical Care Research 
Network (CPCCRN) from February 2015 to December 2017 (9, 25).

We enrolled children aged 31 days to 18 years who were expected 
to require mechanical ventilation via endotracheal tube for at least 72 
hours. Exclusion criteria included inability to obtain a TA sample from 
the patient within 24 hours of intubation; presence of a tracheostomy 
tube or plans to place one; any condition in which deep tracheal suc-
tioning was contraindicated; a previous episode of mechanical venti-
lation during the hospitalization; family/team lack of commitment to 
aggressive intensive care as indicated by “do-not-resuscitate” orders 
and/or other limitation of care; or previous enrollment into this study. 
Some patients were ultimately excluded from the present analysis 
based on sequencing metrics, as described in the following.

Parents or other legal guardians of eligible patients were approached 
for consent by study-trained staff as soon as possible after intubation. 
Waiver of consent was granted for TA samples to be obtained from stan-
dard-of-care suctioning of the endotracheal tube until the parents or 
guardians could be approached for informed consent.

Prospectively collected clinical data were recorded in a web-based 
research database maintained by the CPCCRN data-coordinating 
center at the University of Utah, Salt Lake City, Utah, USA.

Clinical microbiologic diagnostics. Enrolled patients received stan-
dard-of-care clinical respiratory microbiologic diagnostics, as ordered 
by treating clinicians at each study site. These diagnostics included 
NP swab respiratory viral testing by multiplex PCR and/or TA bacte-
rial and fungal semiquantitative cultures. Clinical diagnostic tests on 
samples obtained within 48 hours of intubation were included in the 
analyses. Microbes reported by the clinical laboratory as representing 
laboratory, skin, or environmental contaminants, or reported as mixed 
upper respiratory flora, were excluded.

Adjudication of LRTI status. Adjudication of LRTI status was per-
formed without knowledge of the mNGS results and depended on the 
combination of two elements: (a) a retrospective clinical diagnosis 
made by study-site clinicians, who reviewed all clinical, laboratory, 
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drop in abundance between the ranked species in the sample; and (d) 
deemed any species above the largest drop in abundance with known 
ability to cause LRTI as a potential pathogen.

Analysis of microbiome diversity. The Shannon diversity index was 
calculated using either all viral and bacterial taxa, or only bacterial 
taxa, that were present after background filtering using the R package 
Vegan (61). Two-sided Mann-Whitney tests with Bonferroni’s correc-
tion were used to evaluate statistical significance of group differences. 
Tests with P < 0.05 were considered significant.

Classification of LRTI status based on integration of host and microbial 
features. For the integrated host/microbe LRTI classifier, we fit a logistic 
regression model on the following underlying features: (a) the host LRTI 
probability; (b) the summed abundance, measured in rpM, of any patho-
genic viruses present after background filtering (the viral score); and (c) 
the proportion of any potentially pathogenic bacteria/fungi identified 
by the RBM of all nonhost read counts (the bacterial score).

To avoid any leakage from the test set affecting the host proba-
bilities of the training samples in the context of cross-validation, we 
always used the out-of-bag “votes” generated when fitting the host 
random forest classifier on the training set as the host probabilities of 
the training samples in the integrated classifier, rather than using their 
out-of-fold host probabilities. We applied a logistic (log-odds) trans-
formation to the host probabilities:

   (Equation 1)
To facilitate the transformation, we first slightly regularized the host 
probabilities and their complementary probabilities away from 0 and 
1 by a quantity inversely proportional to the number of random forest 
trees (RFtrees = 10,000):

    (Equation 2)
For the viral/bacterial scores, we applied a log10 transformation. 

In order to avoid taking the log of 0, we added a small uniform quanti-
ty to the scores of all the samples, which was calculated by taking the 
minimum non-zero viral or bacterial score, respectively, in the corre-
sponding training set and dividing it by 10.

Performance of the integrated classifier was evaluated on the 
patients in the Definite and No Evidence groups using 5-fold cross- 
validation, with the same train/test splits and the same per-split host 
classifiers as in the host-only cross-validation. The AUC for each test 
fold was calculated using the R package pROC (58) with default behav-
ior. Sensitivity and specificity were calculated using a predetermined 
50% out-of-fold LRTI probability threshold.

The integrated classifier was then trained on all the patients in the 
Definite and No Evidence groups and applied to the patients in the 
Suspected and Indeterminate groups.

Data and code availability. Raw FASTQ files are protected due to 
patient privacy concerns. FASTQ files containing nonhost reads gener-
ated by the CZ-ID pipeline, following subtraction of reads aligning to 
the human genome, are available in the NCBI Sequence Read Archive 

We implemented a 5-fold cross-validation procedure, such that 
in each train/test split, we (a) used LASSO logistic regression on the 
samples in the training folds for feature (gene) selection, (b) trained a 
random forest classifier on the samples in the training folds using only 
the selected features, and (c) applied the random forest classifier to 
the samples in the test fold to obtain an out-of-fold host probability of 
LRTI. We required at least 9 patients from the No Evidence group in 
each of the folds to ensure sufficient negative samples in each test set.

Simple LASSO logistic regression was fit using the cv.glmnet 
(family=’binomial’) function from the R package glmnet (56), leav-
ing all other parameters at their defaults. We used the 1se criterion 
for selecting the tuning parameter, which picks the sparsest value of 
the tuning parameter that lies within 1 standard error of the optimum. 
When evaluating test error, we selected the tuning parameter via 
nested cross-validation within the training set only.

Random forest was implemented using the R package randomFor-
est (57). We used 10,000 trees and left all parameters at their defaults.

The AUC for each test fold was calculated using the R package 
pROC (58) with default behavior. Sensitivity and specificity were calcu-
lated using a predetermined 50% out-of-fold LRTI probability threshold.

Detection of microbes by mNGS and background filtering. We pro-
cessed patient TA samples alongside water controls through the open-
source CZ-ID (formerly called IDSeq) metagenomic analysis pipe-
line (59). The pipeline performs subtractive alignment of the human 
genome and then reference-based alignment of the remaining reads 
at both the nucleotide and amino acid level against sequences in the 
National Center for Biotechnology Information (NCBI) nucleotide 
and nonredundant databases, respectively. This is followed by assem-
bly of the reads matching each taxon. Taxa with ≥5 read counts in the 
nucleotide alignment and an average assembly nucleotide alignment 
≥70 bp were retained for downstream analysis.

Water controls enabled estimation of the number of background 
reads expected for each taxon, as previously described (9, 47). This 
was done by modeling the number of background reads as a negative 
binomial distribution with mean and dispersion fitted on the water 
controls. For each batch (sequencing run) and taxon, we estimated 
the mean parameter of the negative binomial distribution by averag-
ing the read counts across the water controls after normalizing by the 
total nonhost reads, slightly regularizing this estimate by including the 
global average (across all batches) as an additional sample. We esti-
mated a single dispersion parameter across all taxa and batches using 
the functions glm.nb() and theta.md() from the R package MASS (60). 
Taxa were then tested for whether they exceeded the count expected 
from the background distribution, and a Benjamini-Hochberg adjust-
ment was applied to all tests performed in the same sample. Taxa were 
considered present in a sample if they achieved an adjusted P < 0.05.

Any virus with known ability to cause LRTI, based on a previously 
conducted literature curation (22), that was present in a patient sample 
after background filtering was considered a probable pathogen.

RBM. For bacteria and fungi that were present after background 
filtering, we additionally applied the RBM to distinguish potential 
pathogens from likely commensals (22). To apply the RBM on each 
sample, we (a) retained the most abundant bacterial/fungal species 
from each genus and any less abundant species in the genus that had 
known ability to cause LRTI, based on a previously conducted litera-
ture curation (22); (b) ranked all the retained species in the sample by 
abundance and limited, at most, to the top 15; (c) identified the largest 
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rison [CI], Neda Ashtari [RC]; Anna Ratiu [RC]); Children’s Hospital 
of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, 
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Koch [RC]; Alan Abraham [RC]); and Benioff Children’s Hospital, 
University of California, San Francisco, San Francisco, California, 
USA (Patrick McQuillen [PI]; Anne McKenzie [RC]; Yensy Zetino 
[RC]). We also acknowledge the support of the University of Utah 
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(PI); Richard Holubkov (PI), Juhee Peterson, Melissa Bolton, Whit 
Coleman, and Stephanie Dorton. This study was supported in part 
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and M. Dean), UG1HD083170 (to M. Hall), UG1HD050096 (to K.L. 
Meert), UG1HD63108 (to A. Zuppa), UG1HD083116 (to A. Sapru), 
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K23HL138461, and 5R01HL155418 (to CRL). The study was also 
supported by funding from the Chan Zuckerberg Biohub (to CRL). 
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analysis, and interpretation of data; in the writing of the report; and in 
the decision to submit the report for publication.
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database under BioProject accession PRJNA875913. All data, code, and 
results related to the mNGS classifier, including the host gene counts and 
microbial taxon counts, are available at https://github.com/eranmick/
pediatric-mNGS-LRTI-classifier (main branch, commit ID6138ed0). 
The host gene counts are also available in the NCBI Gene Expression 
Omnibus database under accession GSE212532. The raw microbial data 
are available for interactive browsing on the CZ-ID portal under project 
pediatric-mNGS-LRTI-classifier (https://czid.org/pub/wmFz4U7huT).

Statistics. This study implemented a 5-fold cross-validation scheme 
to develop and evaluate performance of a binary classifier using sam-
ples with presumed known labels. Algorithms used in the classification 
procedure included logistic regression and random forest, which gen-
erate a probabilistic classification output. The AUC, as well as sensi-
tivity and specificity at a predetermined probability threshold of 50%, 
were used as performance metrics. Statistical tests used throughout 
the study included moderated t tests (2 tailed), the Mann-Whitney test, 
and Fisher’s exact test, as described in detail in the corresponding sec-
tions of the Methods and in the figure and table legends.

Study approval. The original cohort study was approved by the 
Collaborative Pediatric Critical Care Research IRB at the University of 
Utah (protocol no. 00088656). Informed consent was obtained from 
parents or other legal guardians, which included permission for col-
lected specimens and data to be used in future studies.
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